- замкнутые множества
- closed sets
Дополнительный универсальный русско-английский словарь. 2013.
Дополнительный универсальный русско-английский словарь. 2013.
Замкнутые множества — (математические) точечные множества на прямой, в плоскости или в пространстве, содержащие все свои прикосновения точки (См. Прикосновения точка). При этом точкой прикосновения множества Е называется такая точка (не обязательно… … Большая советская энциклопедия
Замкнутые классы булевых функций — Замкнутый класс в теории булевых функций такое множество функций алгебры логики, замыкание которого относительно операции суперпозиции совпадает с ним самим: . Другими словами, любая функция, которую можно выразить формулой с использованием … Википедия
Измеримые множества — (в первоначальном понимании) множества, к которым применимо данное французским математиком А. Лебегом определение меры (см. Мера множества). И. м. одно из основных понятий теории функций действительного переменного (см. Функций теория),… … Большая советская энциклопедия
ТОПОЛОГИЧЕСКОЕ ПРОСТРАНСТВО — совокупность двух объектов: множества X, состоящего из элементов произвольной природы, наз. точками данного пространства, и из введенной в это множество топологической структуры, или топологии, все равно открытой или замкнутой (одна переходит в… … Математическая энциклопедия
Булева функция — В данной статье или разделе имеется список источников или внешних ссылок, но источники отдельных утверждений остаются неясными из за отсутствия сносок … Википедия
Булевы выражения — В теории дискретных функциональных систем булевой функцией называют функцию типа , где булево множество, а n неотрицательное целое число, которое называют арностью или местностью функции. Элементы 1 (единица) и 0 (ноль) стандартно интерпретируют… … Википедия
БОРЕЛЕВСКОЕ МНОЖЕСТВО — B множество, множество, к рое может быть получено в результате не более чем счетной совокупности операций объединения и пересечения открытых и замкнутых множеств топологич. пространства. Более точно, борелевским множеством наз. элемент… … Математическая энциклопедия
ОТДЕЛИМОСТИ АКСИОМА — условие, налагаемое на топологич. пространство и выражающее требование, чтобы те или иные дизъюнктные, т. е. не имеющие общих точек, множества были в нек ром определенном смысле топологически отделены друг от друга. Простейшие, т. е. самые слабые … Математическая энциклопедия
НОРМАЛЬНОЕ ПРОСТРАНСТВО — топологическое пространство, удовлетворяющее аксиоме (см. Отделимости аксиома), т. е. такое топологич. пространство, в к ром одноточечные множества замкнуты и любые два дизъюнктные замкнутые множества отделимы окрестностями (т. е. содержатся в… … Математическая энциклопедия
Множеств теория — учение об общих свойствах множеств, преимущественно бесконечных. Понятие множества, или совокупности, принадлежит к числу простейших математических понятий; оно не определяется, но может быть пояснено при помощи примеров. Так, можно… … Большая советская энциклопедия
ТОПОЛОГИЧЕСКОЕ ПРОИЗВЕДЕНИЕ — тихоновскоe произведение, семейства топологических пространств топологич. пространство где X декартово произведение (т. е. полное прямое произведение) множеств по и слабейшая (т. е. наименьшая) топология на множестве Xтакая, что все отображения… … Математическая энциклопедия